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Abstract
The one-phonon resonant Raman scattering of tetragonal zinc-blende-like
semiconductors is presented and applied to II–III2–VI4 ordered-vacancy
compounds, in particular to ZnGa2Se4. The well-known theory of one-phonon
resonant Raman scattering in III–V or II–VI polar semiconductors has been
extended to the tetragonal symmetry of these materials in the approximation
that they can be considered as slightly distorted zinc-blende compounds.
This approach is especially valid for the high frequency B + E modes that
arise from the zone centre optical mode of the zinc-blende structure and
show, in an ordered-vacancy compound, a very small tetragonal splitting.
The LO components of these modes, BLO and ELO, are considered. The
contribution of the different excitonic transitions to the scattering process is
studied. Deformation potential and Fröhlich interaction are considered as
exciton–phonon interaction mechanisms. Emphasis is placed in the discussion
on aspects related to symmetry lowering. Interference effects between excitonic
resonances are also discussed.

1. Introduction

Resonant Raman scattering (RRS) has an advantage over other optical techniques in that it
supplies simultaneously information about the electronic structure and the lattice dynamics of
semiconductors. Raman selection rules allow the study of electron–phonon interaction and
the separation of long-range (Fröhlich interaction (FI)) and short-range (deformation potential
(DP)) electron–phonon interactions via symmetry considerations [1].

RRS by one LO phonon is a third-order process in which the energy of the photon is
transferred to the lattice via intermediate electronic states. A theoretical model that gives a
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good agreement with experimental measurements has been developed for the II–VI and III–V
cubic semiconductors [2–4]. In a three-band model, using the hydrogenic approximation for
the discrete–discrete, discrete–continuous, continuous–discrete and continuous–continuous
exciton states, the Raman polarizability for the DP interaction was calculated [2]. In order
to get the Raman polarizability for the FI, a two-band model with the same Wannier–Mott
exciton as the intermediate electronic state was employed [3]. Effects of interference between
FI and DP mechanisms were analysed too [3, 4]. The expressions derived from this theory
are quite general. The choices of the envelope function and the Raman tensor for the zone
centre optical phonons constitute the only approximation. In the framework of the virtual
crystal approximation, where the cation potential is replaced by a weighted average of the
cation potentials and disorder effects are not taken into account, these models have been used
satisfactorily in several papers concerning zinc-blende alloys [5, 6].

As regards non-cubic systems, RRS has been applied in the vicinity of the
fundamental absorption edge to investigate the electron–phonon interactions in the AgGaSe2

chalcopyrite [7]. Enhancements in the cross sections of several one-phonon and multiphonon
Raman bands at its lowest energy exciton were observed. In that work, the chalcopyrite band
structure was considered as that of zinc-blende under a uniaxial strain along the [001] axis.

On the other hand, the II–III2–VI4 semiconductors or ordered-vacancy compounds (OVC),
with space groups I 4̄ or I 4̄2m, have attracted attention because of their interesting optical
and optoelectronic properties with potential applications. Among other techniques, Raman
scattering has been widely used to study vibrational and structural properties [8]. In some of
these works resonance enhancements have been reported. However, up to now, we have no
knowledge of a theoretical treatment of the one-phonon resonant Raman scattering (OPRRS)
in II–III2–VI4 semiconductors.

In this paper, we focus our attention on the OPRRS by optical phonons near the Eg1, Eg2

and Eg3 gaps in II–III2–VI4 semiconductors. The main assumption of our model is that in
these compounds the following conditions are satisfied:

(a) the polar modes of highest frequency at the Brillouin zone centre arise from the zone
centre mode of the cubic zinc-blende analogue [1],

(b) the polar modes with the highest energy are determined by the properties of the III–
VI sublattices alone and are not influenced by the presence of the ordered array of
vacancies [9],

(c) the electronic states at the top of the valence band arise mainly from anion p states and
are not affected significantly by cation substitution or vacancies.

We take the tetragonal distortion to be along the [001] direction. Thus, the II–III2–VI4

compounds can be considered as a double zinc-blende unit cell deformed along the [001]
direction and the theory of OPRRS in the II–VI and III–V semiconductors may be applied
to the highest frequency polar mode with some modifications to account for the symmetry
of the phonons and electronic states, the volume of the primitive cell and selection rules of
the process. From the calculation of the Raman polarizability a strong enhancement of the
one-phonon intensity is predicted when the photon energies are resonant with the free exciton.
Differences with respect to the cubic case and interference effects are discussed.

The organization of this paper is as follows. In the next section, we will review briefly
the relevant topics as regards the structural, optical and vibrational properties of II–III2–VI4

compounds. The energies and wavefunctions of the valence bands are determined as a function
of a tetragonal crystal field parameter. In section 3, we will recall the theory of RRS in cubic
tetrahedral semiconductors and will adapt it for II–III2–VI4 tetragonal compounds. Section 4
is devoted to results and discussion. The defect stannite ZnGa2Se4 is presented as an example.
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Figure 1. A schematic diagram of electronic states at the top (bottom) of the valence (conduction)
bands of II–III2–VI4 compounds. This case corresponds to negative crystal field parameter. When
the value of the crystal field parameter is positive, the ordering of light hole and heavy hole bands
is interchanged.

Selection rules are worked out and the intensity dependence on excitation energy is discussed.
Finally, the last section summarizes our conclusions.

2. Fundamentals topics

The tetragonal II–III2–VI4 compounds can be regarded as derived from the zinc-blende
structure by successive cation substitution and the incorporation of an ordered array of
vacancies in cationic sites. These changes yield a doubling of the unit cell along the c axis and
a slight compression, so c � 2a.

In zinc-blende-type crystals, the lowest conduction band and the top valence band at the
zone centre are identified with anti-bonding (s-symmetry) and bonding (p-symmetry) orbitals,
respectively. The sixfold-degenerate zone centre valence bands (orbital symmetry �15) are
split by the spin–orbit interaction into a fourfold-degenerate�8 state (p3/2 multiplet; J = 3/2,
m j = ±3/2,±1/2) and a doubly degenerate �7 state (p1/2 multiplet; J = 1/2, m j = ±1/2)
(see figure 1). When the crystal potential has tetragonal symmetry, the J = 3/2 multiplet
is further split so that the higher lying states are either the heavy hole or the light hole ones,
depending on the sign of the crystal field parameter. Thus, the fundamental absorption edge can
be identified with light hole or heavy hole valence band states (see figure 1). In the materials
under study the gap is a direct one. We therefore restrict our analysis to the Brillouin zone
centre (� point).

We will consider the II–III2–VI4 semiconductors as zinc-blende-like materials distorted
along the [001] axis and built of two sublattices: a cationic (cations plus ordered vacancies) and
an anionic one in which the properties of the polar modes of highest frequency are determined
only by III–VI sublattices. This assertion derives from many experimental results, from which
it is found that substitution of the divalent cation does not affect the energy of the high frequency
mode while it is modified by a change in either the trivalent cation or in the anion. The different
structures that can be formed according to the cation distribution have been described in [10].
Since the tetragonal distortion is small, we assume that the states at the bottom (top) of the
conduction (valence) bands can be identified with states of s and p symmetry, respectively, as
in the zinc-blende lattice. Then we will assume parabolic bands and, in the framework of the
envelope-function approximation, the hydrogenic model.
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We now describe how the lower symmetry affects the top valence bands. For these states
the Hamiltonian can be written as

Ĥ = Ĥso + Ĥcf,

Ĥso being the spin–orbit Hamiltonian and Ĥcf the crystal field potential that accounts for the
tetragonal distortion at �k = 0. Taking the latter to be along the [001] direction, its expression
is given by

Ĥcf = − 3
2 δ
[

L̂2
z − 1

3 L̂2
]
, (1)

where L̂ is the angular momentum operator and L̂z its z component. With this definition of
Ĥcf , the crystal field parameter δ gives the linear splitting of the J = 3/2 multiplet.

From the three factors that characterize the tetragonal symmetry of OVC (tetragonal
distortion, cationic asymmetry and anionic displacement) [10], it has been found that the
tetragonal crystal field potential, in the quasicubic model, is dominated by the tetragonal
distortion [11]. Then, δ can be written as

δ = 3
2 bDP(2 − c/a), (2)

where bDP is a typical DP parameter of the corresponding binary compound and 2 − c/a is a
measure of the tetragonal distortion.

For convenience, we will use the same notation as Pollak and Cardona in [12]. For a
zinc-blende crystal the wavefunctions of the valence band, in the (J,m j ) representation along
the [001] direction, and the conduction band can be written as [2]∣∣∣∣32 ,+

3

2

〉
001

= 1√
2

|(X + iY ) ↑〉 ,
∣∣∣∣32 ,−3

2

〉
001

= 1√
2

|(X − iY ) ↓〉 ,∣∣∣∣32 ,+
1

2

〉
001

= 1√
6

|(X + iY ) ↓ −2Z ↑〉 ,
∣∣∣∣32 ,−1

2

〉
001

= 1√
6

|(X − iY ) ↑ +2Z ↓〉 ,∣∣∣∣12 ,+
1

2

〉
001

= 1√
3

|(X + iY ) ↓ +Z ↑〉 ,
∣∣∣∣12 ,−1

2

〉
001

= 1√
3

|(X − iY ) ↑ −Z ↓〉 ,∣∣∣∣12 ,+
1

2

〉
= |S ↑〉 ,

∣∣∣∣12 ,−1

2

〉
= |S ↓〉 ,

(3)

↑ (↓) indicating spin up (down). X , Y and Z (S) are the valence band (conduction band)
wavefunctions which transform as atomic p (s) functions under the operations of the group of
the tetrahedron.

Since the tetragonal crystal field does not remove the Kramers degeneracy of each state,
from equations (1)–(3) the Hamiltonian matrix for the valence bands has the following form:∣∣ 3

2 ,+ 3
2

〉
001

∣∣ 3
2 ,+ 1

2

〉
001

∣∣ 1
2 ,+ 1

2

〉
001


1
3�0 − 1

2 δ 0 0

0 1
3�0 + 1

2δ −
√

2
2 δ

0 −
√

2
2 δ − 2

3�0


 , (4)

�0 being the spin–orbit splitting. From the above Hamiltonian, the energies of the valence
bands can be calculated as follows:

E1 = − 1
6�0 + 1

4δ + 1
2

√
�2

0 +�0δ + 9
4δ

2,

E2 = 1
3�0 − 1

2 δ,

E3 = − 1
6�0 + 1

4δ − 1
2

√
�2

0 +�0δ + 9
4δ

2.

(5)
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When δ � �0, equation (5) can be expanded in powers of δ/�0:

E1 = 1

3
�0 +

1

2
δ +

1

2

δ2

�0
+ · · · , (lh)

E2 = 1

3
�0 − 1

2
δ, (hh)

E3 = −2

3
�0 − 1

2

δ2

�0
+ · · · , (so)

(6)

and the wavefunctions of the valence band states at �k = 0 are obtained in first order as

v±
1 =

∣∣∣∣32 ,±1

2

〉
001

− α0√
2

∣∣∣∣12 ,±1

2

〉
001

(lh)

v±
2 =

∣∣∣∣32 ,±3

2

〉
001

(hh)

v±
3 =

∣∣∣∣12 ,±1

2

〉
001

+
α0√

2

∣∣∣∣32 ,±1

2

〉
001

, (so)

where α0 = δ/�0. If the condition δ � �0 is not satisfied, the energies and wavefunctions
can be determined from the diagonalization of the Hamiltonian matrix (4).

3. The theory of one-phonon RRS in II–III2–VI4 semiconductors

We will give theoretical expressions for a OPRRS process in which the exciton–phonon
interaction occurs via DP and FI. For clarity, we will use the same notation as in [2] and [3].
Under the assumption of small distortion and a quasicubic mode, the expressions given in
these works for the Raman polarizability in the cubic case are also valid for tetragonal systems,
provided that tetragonality is introduced as appropriate:

(i) hh and lh valence bands are split and thus we must consider three gaps instead of two;

(ii) the threefold-degenerate zone centre mode of the zinc-blende structure is split into a singlet
and a doublet (B2 + E , in the I 4̄2m systems), that must be handled separately.

3.1. Raman polarizability

To calculate the OPRRS, we consider a model with parabolic bands and correlated electron–
hole pairs as excited states. The Raman scattering intensities are displayed as squared
Raman polarizabilities. These independent components of the Raman tensor are related to
the probability amplitude WFI for the transition between an initial state |I〉 and a final state |F〉
through [13]

�es · ↔
R · �eL = ηLηs

2π

Vc

ū0

1

h̄ωL
WFI(ωs, �es;ωL, �eL),

where ηs (ηL) is the refraction index for scattered (incident) light with frequency ωs (ωL)
and vector polarization �es (�eL), Vc is the volume of the primitive cell and ū0 is the relative
displacement of ions vibrating in a zinc-blende-like optical mode with frequency ω0.

Considering only the term that dominates near resonance, for a one-phonon process the
probability amplitude can be expressed as
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WFI =
∑
p,q

[ 〈F |ĤER|q〉〈q|ĤEL|p〉〈p|ĤER|I〉
(h̄ωL − E p + i�p)(h̄ωs − Eq + i�q)

]
.

The indices p and q refer to excitonic intermediate states with energies and lifetime broadening
parameters E p, �p and Eq , �q , respectively. ĤEL is the exciton–phonon interaction
Hamiltonian containing ĤDP and ĤF, the Hamiltonians for DP and FI, respectively, that we
discuss below. ĤER is the exciton–radiation interaction Hamiltonian that can be written as [13]

ĤER =
∑

p, �K ,�e,�κ

{
T p

cv(
�K )D†

p �K (a�κ,�e + a†
−�κ,�e) + [T p

cv(
�K )]∗Dp �K (a�κ,�e + a†

−�κ,�e)
}
,

where �κ is the wavevector of light; �K is the centre-of-mass momentum of the exciton;
D†

p �K (Dp �K ) and a†
−�κ,�e (a�κ,�e) are creation (annihilation) operators for excitons and photons,

respectively. The exciton–photon coupling constants are given by [14]

T p
cv(

�K ) = − e

m0

(
2π h̄

ωλη
2
λ

)1/2

�e · 〈c| �p|v〉ψp(0)δ �K ,�κ,

where λ is equal to L or s; e and m0 are the free-electron charge and mass; ψp(�r) is the
internal exciton wavefunction and 〈c| �p|v〉 is the matrix element of the momentum operator �p
connecting conduction and valence band states |c〉, |v〉, respectively.

3.2. Dipole-allowed DP interaction

To calculate the Raman polarizabilities, we consider first the dipole-allowed DP interaction.
We use a three-band model involving two valence bands (vp and vq ) and one conduction
band (c). We reproduce from [2] the final expression for the Raman polarizability for DP
interaction, using the hydrogenic approximation for the discrete and continuous exciton states
and assuming the same Bohr radius for all excitons [2]:

�̂es · ↔
RDP · �̂eL =

∑
p,q

K DP
q,p

{ ∞∑
n=1

1

2n3

1(
ηp + 1/n2 + iγp

)(
ηq − η0 + 1/n2 + iγq

)
+

1

4(η0 + ηp − ηq + i[γp(k)− γq(k)])

{
ln

(
ηq − η0 + iγq(k)

ηp + iγp(k)

)

+ π i

[
coth

[
π√

ηp + iγp(k)

]
− coth

[
π√

ηq − η0 + iγq(k)

]]}}
(7)

with

ηp = h̄ωL − Egp

Rp
, η0 = h̄ω0

Rp
, γp = �p

Rp
,

where Rp is the exciton Rydberg and Egp the gap related to exciton p. The sum in p, q runs
over heavy hole (hh), light hole (lh) and split-off (so) excitons. The factor K DP

q,p is equal to

K DP
q,p = Vc

2πm0a0

R2
H

√
3

R2

a3
H

a3
B

〈c|⇀es · �p|vq〉〈vq |Dh|vp〉〈vp|⇀eL · �p|c〉
h̄ωL

√
h̄ωLh̄ωs

, (8)

where |vp〉, |vq〉 and |c〉 are the Bloch functions at �k = 0 of the valence and conduction
bands, respectively, corresponding to excitons p and q . aH and RH are the Bohr radius and
Rydberg energy of the hydrogen atom, respectively, aB is the exciton Bohr radius and a0 is an
average, cubic-like lattice parameter. Dh are the tensorial components of the DP interaction.
The assumption of the same Bohr radius for all excitons has been justified in [2] for cubic
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Table 1. Matrix elements EM = 〈c|⇀es · �p|vq 〉〈vq |Dh|vp〉〈vp |⇀eL · �p|c〉 for several scattering
configurations on the (001) and (100) faces of tetragonal systems when the transitions νp → νq

occur via DP interaction. l = 1, 2 and 3 correspond to lh, hh and so excitons, respectively.
P = 〈S|px |X〉 = 〈S|py |Y 〉 and Pz = 〈S|pz|Z〉.

B2(z), z̄(x, y)z E(x), x̄(y, z)x
l νp → νq EM EM

1 ν1 → ν2
d0

6
P2(1 − α0)

2 0

1 ν1 → ν3 0
d0

6
Pz P(1 − α0)

2
(

1 − α2
0

2

)

2 ν2 → ν1
d0

6
P2(1 − α0)

2 d0

3
Pz P

(
1 +

α0

2

)2

2 ν2 → ν3
d0

3
P2
(

1 +
α0

2

)2 d0

6
Pz P(1 − α0)

2

3 ν3 → ν1 0
d0

3
Pz P

(
1 +

α0

2

)2(
1 +

α2
0

2

)

3 ν3 → ν2
d0

3
P2
(

1 +
α0

2

)2

0

systems. In this approximation the continuous–discrete and discrete–continuous contributions
are equal to zero [2]. The first term on the right-hand side in equation (7) corresponds to the
discrete–discrete excitonic transition and the last one to continuous–continuous contributions.

The selection rules for OPRRS processes are determined by the matrix elements

〈c|⇀es · �p|vq〉〈vq |Dh|vp〉〈vp|⇀el · �p|c〉. (9)

The DP operators Dh corresponding to each mode, when acting on |X〉, |Y 〉, |Z〉 electronic
states, have the same form as the Raman tensors for the zone centre optical phonons, that for
B2 and E modes in I 4̄2m symmetry can be written as [1]

B2(z) =
( d

d

)
, E(y) =

( e

e

)
, E(x) =

(
e

e

)
.

The E modes are twofold degenerate. The index in brackets stands for the phonon polarization
direction. In table 1 we give the values of the matrix elements in equation (9) for a tetragonal
system such as ZnGa2Se4 when the exciton–phonon interaction occurs via DP.

3.3. Dipole-forbidden Fröhlich interaction

In the framework of the envelope-function approximation and the hydrogenic model, the Raman
polarizability for a FI two-band process is given by the following expression [3]:

aF =
∑

p

K F
p

[∑
n,m

Dn,m

(ηp + 1/n2 + iγn)(ηp − η0 + 1/m2 + iγm)

+
∑

n

∫ ∞

0

Dn,k

1 − e−2π/k

1

n3

[
1

(ηp − k2 + iγ (k))(ηp − η0 + 1/n2 + iγn)

+
1

(ηp + 1/n2 + iγn)(ηp − η0 − k2 + iγ (k))

]
dk
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+
i

8(Q2
e − Q2

h)

[
1

Qe
ln

(√
ηp + iγ (k) +

√
ηp − η0 + iγ (k)− Qe√

ηp + iγ (k) +
√
ηp − η0 + iγ (k) + Qe

)

− 1

Qh
ln

(√
ηp + iγ (k) +

√
ηp − η0 + iγ (k)− Qe√

ηp + iγ (k) +
√
ηp − η0 + iγ (k) + Qe

)]]
, (10)

where the sum in p runs over hh, lh and so excitons. The coefficients are given by

Dn,m = 1

nm

In,m(−Qh)− In,m(Qe)

Q2
e − Q2

h

,

Dn,k = In,k(−Qh)− In,k(Qe)

Q2
e − Q2

h

,

K F
p = 2

π

√
a2cM∗h̄ω0

m0 RH

QaH

h̄ωl
√

h̄ωl h̄ωs

〈c|⇀eL · �p|vp〉〈vp|⇀es · �p|c〉
m0

aH

aB

(
RH

R

)2

C∗
F

me − mh

me + mh
,

with

In,m = −4

Qα[(m − n)2 + n2m2 Q2
α]

F

(
1 − m, 1 − n, 2,

−4mn

(m − n)2 + n2m2 Q2
α

)

× Im

[(
m − n − inm Qα

m + n − imnQα

)m(n − m − iQαmn

n + m − iQαmn

)n]

In,k = 4k

Qα

(−1)n−1n2 Im

[
F(1 − n, 1 + i/k, 2, z)

[1 − in(k − Qα)][1 − in(k + Qα)]

×
(

[1 − in(k − Qα)]2n

[1 + n2(k − Qα)2]n

(
1 + in(k − Qα)

1 − in(k + Qα)

)i/k)]
,

where F is the hypergeometric function, �Qα = (mα/(me + mh)) �QaB and �Q is the phonon
wavevector. The Fröhlich constant CF is given by CF = −i(ε−1∞ − ε−1

0 )1/2(2π h̄ω0e2)1/2,
where ε∞ and ε0 are the optical and static dielectric constants, respectively, that we assume to
be isotropic. me and mh are the electron and hole effective masses, respectively.

The first term inside the second set of large parentheses in equation (10) represents the
contribution of the discrete exciton states, the second and third terms correspond to continuous–
discrete and discrete–continuous transitions and the last one is due to the continuous states.
The most important contributions to the Raman tensor come from discrete–continuous plus
continuous–discrete exciton terms [3].

The selection rules for OPRRS process are obtained from the matrix elements

〈c|⇀eL · �p|vp〉〈vp |⇀es · �p|c〉 (11)

in K F
p . These yield Raman tensors for forbidden FI in I 4̄2m symmetry of the form [1]

B F
2(z) =

( dF

dF

d ′
F

)
, E F

(y) =
( eF

eF

e′
F

)
, E F

(x) =
( eF

eF

e′
F

)
.

Matrix elements for FI are given in table 2.

4. Results and discussion

With the preceding equations we have calculated the Raman polarizability for the highest
frequency BLO and ELO pseudocubic modes of ZnGa2Se4 (≈286 cm−1) in several
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Figure 2. Raman polarizability for the B2(z) mode of ZnGa2Se4 in the z(xy)z̄ configuration when
the exciton–phonon interaction occurs via DP. The solid (dotted) curve corresponds to a tetragonal
(cubic) crystal field. The incoming (in) and outgoing (out) resonances for lh, hh and so excitons
are indicated for n = 1. The broadening parameter �p(1) is equal to 2 meV for all excitons.

Table 2. Matrix elements E M = 〈c|⇀es · �p|vp〉〈vp |⇀eL · �p|c〉 for several scattering configurations
on the (001) and (100) faces when the transitions νp → νq occur via Fröhlich interaction. l = 1, 2
and 3 correspond to lh, hh and so excitons, respectively. P = 〈S|px |X 〉 = 〈S|py |Y 〉 and
Pz = 〈S|pz|Z〉.

B2(z), z̄(x, x)z E(x), x̄(z, z)x E(x), x̄(y, y)x
l νp → νp EM EM EM

1 ν1 → ν1
1
6 P2(1 − α0)

2 2

3
P2

z

(
1 +

α0

2

)2
1
6 P2(1 − α0)

2

2 ν2 → ν2
1
2 P2 0 1

2 P2

3 ν3 → ν3
1

3
P2
(

1 +
α0

2

)2
1
3 P2

z (1 − α0)
2 1

3
P2
(

1 +
α0

2

)2

backscattering configurations on the (001) and (100) planes. In the selected configurations the
BLO or ELO character is exact, in the sense that no symmetry or character mixing occurs, i.e.,
the formalism of oblique phonons for uniaxial media is not necessary.

The selection rules of the processes can be determined from expressions (9) and (11) for
the DP and FI, respectively. The results are presented in tables 1 and 2, in which P = 2π h̄/a
and Pz = 2π h̄/cz with cz = c/2. From table 1, we can see the different behaviour of mode
ELO in configuration x̄(y, z)x relative to that of BLO in configuration z̄(x, y)z. In contrast,
from table 2, we can note that mode BLO in the z̄(x, x)z configuration has the same behaviour
as ELO in the x̄(y, y)x configuration but different to that of ELO in the x̄(z, z)x configuration.

The Raman polarizabilities for LO phonons in ZnGa2Se4 as a function of incident energy
are shown in figures 2–5. The incoming and outgoing resonances are indicated by ‘in’ and
‘out’, respectively, the difference between them being equal to the phonon energy, 0.035 eV.
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Figure 3. Raman polarizability for B2(z) (solid curve) and E(x) (dashed curve) modes of ZnGa2Se4
in z(xy)z̄ and x(yz)x̄ configurations, respectively, when the exciton–phonon interaction occurs via
DP. The broadening parameters are �lh(1) = �hh(1) = 5 meV, �so(1) = 10 meV. The incoming
(in) and outgoing (out) resonances are indicated for n = 1, 2 and 3.
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Figure 5. Raman polarizability for B2(z) (solid curve) and E(x) (dashed curve) modes of ZnGa2Se4
in z(xx)z̄ and x(zz)x̄ configurations, respectively, when the exciton–phonon interaction occurs via
FI. The broadening parameters are �lh(1) = �hh(1) = 5 meV, �so(1) = 10 meV. The incoming
(in) and outgoing (out) resonances are indicated for n = 1, 2 and 3.

In all cases, the Raman intensity decreases when n increases, as results from equations (7) (for
DP) and (10) (for FI). The contributions of heavy hole, light hole and split-off excitons are
added before squaring, allowing for interference effects between them. These contributions
are indicated by hh, lh and so, respectively. In order to evaluate the lifetime we have used the
following empirical relation:

�p(n) = �p(k)− [�p(k)− �p(1)]

n2
. (12)

Since we lack experimental data, the values of the broadening parameters are arbitrarily
assumed. We have taken �p(k) = 10 meV for all continuum excitons; �hh(1), �lh(1) and
�so(1) are given either the same or different values, varying with p. The Rydberg energies
Rhh, Rlh and Rso have been taken to be equal. We will also assume that the valence band
masses are isotropic. In such cases heavy and light hole effective masses can be obtained
by averaging over all possible directions of k and the electron effective one is approximately
equal to P2/(2m0)Eg1 [15]. The physical parameters used in the calculations are summarized
in table 3.

Figure 2 depicts the dependence on the excitation energy of the dipole-allowed DP Raman
intensity for mode BLO in the z̄(x, y)z configuration. In order to stress the contribution of
each term, the lifetime parameters �p(1) (p = hh, lh, so) have been taken equal and small
(2 meV). The calculation for the tetragonal case is compared to that for cubic symmetry,
obtained in the limit δ → 0. In the cubic limit (dotted line) the most intense peaks correspond
to incoming and outgoing resonances of n = 1 excitons of lh + hh and so states. With our
parameters, the incoming resonance is more intense than the outgoing one. The tetragonal
crystal field produces a splitting between the lh and hh resonances of magnitude equal to the
linear crystal field splitting, 0.017 eV. As expected, no difference is found in the region of
the split-off exciton that is, in first order, independent of the tetragonal crystal field. The
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Table 3. Numerical values of the physical parameters for ZnGa2Se4 used in this work.

Parameter Value Parameter Value

ε0 [5] 9 me
a 0.12 m0

ε∞ [5] 5.5 mhh
a 0.77 m0

Rlh 11.5 meV mlh
a 0.16 m0

Eg1 [19] 2.43 eV mso [5] 0.28 m0

�0 [5] 0.403 eV h̄ωLO [8] 35 meV
bDP [15] −1.2 eV

a Estimated from [15].

energies 2.418 and 2.453 eV correspond to incoming and outgoing contributions of n = 1 lh
excitons; 2.435 and 2.470 eV are those corresponding to the hh. The positions of n = 2 and
3 excitons are not indicated for clarity. As in the cubic case, the incoming resonances are
stronger than the outgoing ones. This result is in agreement with the approximation reported
in [2]. The remarkable intensity drop observed around 2.455 eV is due to interference effects
between the outgoing resonances of the lh and hh excitons, higher order terms of incoming hh
resonances and the continuum contribution. Less pronounced interference effects also occur
around 2.42 eV between incoming lh and hh resonances. On the other hand, the low intensity
observed for the lh exciton, as compared with the hh one, is mainly due to the smaller values of
matrix elements involved in that resonance, as shown in table 1. Interference effects account
for the difference between the intensity of the resonance in the cubic case and the sum of
lh + hh resonances.

Interference effects have often been observed in the resonance profile of LO phonons in
cubic semiconductors, and reproduced in the calculations of the Raman polarizability [2, 3, 16–
18]. They are basically of two types: between allowed (DP) and forbidden (FI) scattering,
and, for a given e–phonon interaction mechanism, between different excitonic resonances,
such as those taking place at E0 and E0 +�0 critical points or between incoming and outgoing
resonances. The interference between DP and FI scattering has the added interest that it
allows one to quantify the relative contribution of intrinsic and extrinsic (impurity induced)
processes to Fröhlich scattering [16]. In our case, the geometrical configurations chosen for
the calculations do not allow for interference between DP and FI contributions, since either one
or the other is inactive. As regards interference between excitonic resonances, the tetragonal
splitting between lh and hh states gives rise to interference effects not observed in the cubic
case. On the other hand, the large value of�0 (403 meV) makes interference between (lh, hh)
and so resonances negligible. We can get more insight into the origin of these effects in figure 2
by looking at the signs of the terms being summed in the calculation of the Raman polarizability
for the DP interaction (equation (7)). Since the dominant term is the discrete–discrete one,
to simplify the discussion we shall neglect the continuum contribution. Moreover, from the
discrete–discrete term, we retain only the first excited states (n = 1) of lh and hh excitons,
whose energies are Elh,in = 2.418, Ehh,in = 2.435, Elh,out = 2.453 and Ehh,out = 2.47. These
energies define five regions: (1) E < Elh,in, (2) Elh,in < E < Ehh,in, (3) Ehh,in < E < Elh,out,
(4) Elh,out < E < Ehh,out, (5) Ehh,out < E . Since K DP

qp has the same sign for all q , p indices,
the sign of each (p, q) term is just that of the denominator products η′

p(η
′
q − η0), where the

prime means that the corresponding gaps are diminished by the Rydberg energies and we have
assumed, for the discussion, γp,q → 0. It is straightforward to see that the signs of the two
factors in each of these regions are (−−,+−,+−,+−,++) and (−−,−−,+−,++,++) for
(p = lh, q = hh) and (p = hh, q = lh) terms, respectively. By simple inspection we find that
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destructive interference will occur in the second and fourth regions, that is between lh and hh
(incoming) and between lh and hh (outgoing) resonances, as reflected in the calculations.

Figure 3 illustrates the resonance of the dipole-allowed DP Raman scattering for modes
BLO and ELO in the z̄(x, y)z and x̄(y, z)x backscattering configurations, respectively. The main
difference appears in the region of outgoing resonance of lh and hh excitons where interference
effects are produced, as previously discussed. In these calculations the broadening parameters
have been given more realistic values, close to those typical of zinc-blende compounds:
�lh = �hh = 5 meV; �so = 10 meV. This makes the details of the profile much less resolved
than in figure 2. In practice, the small CF splitting, for instance, may be undetectable.

Figure 4 shows the resonance of the dipole-forbidden FI Raman scattering for the B2 mode
in the z̄(x, x)z configuration in the tetragonal and cubic symmetries. Only the positions of
n = 1 excitons have been indicated. As in figure 2, small � s are imposed so as to differentiate
more clearly the contributions of each of the excitonic bands. Similarly to the DP interaction
case, in the region of lh and hh excitons the peaks appear, in the cubic case, in the unsplit
positions. The higher intensities of the hh peaks relative to lh ones are due to the difference
between the effective masses m lh and mhh appearing in K F

p (m lh ≈ me while mhh � me), the
values of the matrix elements (see table 2) and interference effects. This results in the apparent
gap shifting toward Ehh. Contrary to the DP case, in FI scattering the discrete–continuous
terms are important and an analytical discussion of the origin of the interference effects is not
as simple as in the DP case.

In figure 5 the resonances of the dipole-forbidden FI scattering for modes BLO in z̄(x, x)z
configurations and ELO in x̄(z, z)x configurations are compared, using the same broadening
parameters as in figure 3. ELO in the x̄(y, y)x configuration gives results identical to those
for BLO in the z̄(x, x)z configuration. According to the matrix elements given in table 2,
all excitons contribute to BLO resonance in the z̄(x, x)z configuration, while only lh and so
excitons are expected for ELO in the x̄(z, z)x configuration. The low intensity of lh excitons,
as in figure 4, is due to the small value of the factor me − m lh appearing in K F

P (see table 3).
Since the matrix element for hh excitons is zero for ELO in the x̄(z, z)x configuration, the
intensity in this configuration is much lower than for the BLO mode. It is interesting to note
that the mass effect is also expected in the cubic case, which means that, if electron and lh
effective masses are very similar, the resonance in the lh + hh region will be almost entirely
due to hh excitons.

In the so region all incoming and outgoing resonances are indicated. As compared with
figure 4, the intensity maxima in this region are shifted toward the energies of n = 2 excitons.
This is a consequence of the application of equation (12) for the broadening parameters�so(n).
For �so(k) = 10 meV and �so(1) = 10 meV (figure 5) all excitons contribute with the same
linewidth, while on taking �so(1) = 2 meV (figure 4) the peak intensity of the n = 1 exciton
is enhanced.

5. Summary and conclusions

The one-phonon RRS by high energy LO phonons of tetragonal zinc-blende-like
semiconductors has been investigated, in the framework of a theoretical model including
excitons as intermediate states and exciton–phonon interaction through deformation potential
and Fröhlich mechanisms. With little modification the model can be applied to several
families of tetrahedral semiconductors, such as II–III2–VI4 ordered-vacancy compounds and
chalcopyrites. ZnGa2Se4 has been chosen as an example. Selection rules and interference
effects for quasicubic BLO and ELO modes in different backscattering configurations have
been analysed. The model depends and can give information on physical parameters such as
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the energy band gap, crystal field splitting, phonon mode energy and effective masses. The
similarities and differences between our results and those for the cubic case are discussed.
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